Evaluation of Transferrin and Gallium-Pyridoxal Isonicotinoyl Hydrazone as Potential Therapeutic Agents to Overcome Lymphoid Leukemic Cell Resistance to Gallium Nitrate1
نویسندگان
چکیده
Gallium nitrate is active against lymphoma and bladder cancer; however, little is understood about tumor resistance to this drug. Transferrin, the iron transport protein, increases gallium uptake by cells, whereas pyridoxal isonicotinoyl hydrazone (PIH), an iron chelator, transports iron into cells. Therefore, we examined whether these metal transporters would increase the cytotoxicity of gallium in gallium nitrate-resistant CCRF-CEM cells. Transferrin, in increasing concentrations, enhanced the cytotoxicity of gallium nitrate One mg/mi transferrin decreased the 50% inhibitory concentration of gallium nitrate from 1650 to 75 p.M in gallium-resistant cells and from 190 to 150 LM in gallium-sensitive cells. Transferrin also enhanced the cytotoxicity of gallium even at drug concentrations that were not growth inhibitory. The gallium chelate Ga-PIH inhibited the growth of both gallium nitrate-resistant and -sensitive cells. Fifty pr i Ga-PIH inhibited cellular proliferation by 50%, whereas similar concentrations of PIH or gallium nitrate were not growth inhibitory. However, because higher concentrations of PHI also inhibited cell growth, the cytotoxicity of Ga-Pifi was greater than PIH only at concentrations of <100 ELM. Cross-titration experiments demonstrated that the cytotoxicity of PHI was partially reversed by gallium nitrate, whereas the cytotoxicity of gallium nitrate was enhanced by Pm. Our studies suggest that Ga-Pifi warrants further evalnation as a potential antineoplastic agent. Because transferrin increases the cytotoxicity of gallium nitrate in transferrin receptor-bearing, gallium nitrate-resistant cells, future clinical trials of this drug should incorporate the development of strategies to increase plasma transferrin levels.
منابع مشابه
Evaluation of transferrin and gallium-pyridoxal isonicotinoyl hydrazone as potential therapeutic agents to overcome lymphoid leukemic cell resistance to gallium nitrate.
Gallium nitrate is active against lymphoma and bladder cancer; however, little is understood about tumor resistance to this drug. Transferrin, the iron transport protein, increases gallium uptake by cells, whereas pyridoxal isonicotinoyl hydrazone (PIH), an iron chelator, transports iron into cells. Therefore, we examined whether these metal transporters would increase the cytotoxicity of galli...
متن کاملTransferrin receptor-dependent and -independent iron transport in gallium-resistant human lymphoid leukemic cells.
Recent studies showed that gallium and iron uptake are decreased in gallium-resistant (R) CCRF-CEM cells; however, the mechanisms involved were not fully elucidated. In the present study, we compared the cellular uptake of 59Fe-transferrin (Tf) and 59Fe-pyridoxal isonicotinoyl hydrazone (PIH) to determine whether the decrease in iron uptake by R cells is caused by changes in Tf receptor (TfR)-d...
متن کاملCytotoxic analogs of the iron(III) chelator pyridoxal isonicotinoyl hydrazone: effects of complexation with copper(II), gallium(III), and iron (III) on their antiproliferative activities.
This study examined if complexation with metals increased the antiproliferative activities of chelators of the pyridoxal isonicotinoyl hydrazone (PIH) class. Addition of iron(III) to some PIH analogs markedly depressed their activities, whereas it had little effect on others. The gallium(III) complex of PIH, but not its copper(II) complex, was more efficient than the apochelator at inhibiting [...
متن کاملThe potential of iron chelators of the pyridoxal isonicotinoyl hydrazone class as effective antiproliferative agents.
Numerous studies have suggested that iron (Fe) chelators such as desferrioxamine (DFO) may be useful antitumor agents (Blatt and Stitely, Cancer Res 47:1749, 1987; Becton and Bryles, Cancer Res 48:7189, 1988). Recent work with several analogues of the lipophilic Fe chelator, pyridoxal isonicotinoyl hydrazone (PIH), indicate that some of these ligands are considerably more efficient than DFO bot...
متن کاملInhibition of hemoglobin production by transferrin-gallium.
Recent clinical trials evaluating gallium nitrate as a chemotherapeutic agent have reported the development of microcytic hypochromic anemia in patients treated with this agent. Because gallium is known to bind avidly to transferrin, we examined the effect of transferrin-gallium (Tf-Ga) on hemoglobin production by Friend erythroleukemia cells in vitro. Cellular hemoglobin production, as assesse...
متن کامل